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Abstract. We study an ultracold gas of neutral atoms subject to the periodic optical potential generated
by a high-Q cavity mode. In the limit of very low temperatures, cavity field and atomic dynamics require
a quantum description. Starting from a cavity QED single atom Hamiltonian we use different routes to
derive approximative multiparticle Hamiltonians in Bose-Hubbard form with rescaled or even dynamical
parameters. In the limit of large enough cavity damping the different models agree. Compared to free space
optical lattices, quantum uncertainties of the potential and the possibility of atom-field entanglement lead
to modified phase transition characteristics, the appearance of new phases or even quantum superpositions
of different phases. Using a corresponding effective master equation, which can be numerically solved for
few particles, we can study time evolution including dissipation. As an example we exhibit the microscopic
processes behind the transition dynamics from a Mott insulator like state to a self-ordered superradiant
state of the atoms, which appears as steady state for transverse atomic pumping.

PACS. 42.50.Pq Cavity quantum electrodynamics; micromasers – 37.10.Jk Atoms in optical lattices –
03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices,
and topological excitations

1 Introduction

Laser light, far red detuned from an atomic resonance, is
nowadays a standard tool in experimental quantum op-
tics to create tunable optical potentials [1] which can be
loaded with ultracold atoms to provide for a plethora of
possibilities to study quantum properties of many-body
strongly correlated systems [2]. The high level of micro-
scopic understanding and extensive control of the light
fields and atoms allow to implement genuine models like
e.g. the Bose-Hubbard (BH) model [3,4]. Initially origi-
nating from condensed matter physics [5] it has been used
to study the Mott insulator to superfluid phase transi-
tion [6] in detail and in real time. Adjusting several of
the lattice parameters as the intensity and the configu-
ration of the lattice lasers provides a versatile toolbox of
techniques to control the dynamics of the atoms in the lat-
tice [7]. Moreover, the collisional properties of the certain
types of atoms can be tailored by means of magnetic [8]
or optical [9] Feshbach resonances. Using extra confine-
ment it was even possible to observe the Mott insulator
to superfluid transition in 1D [10,11] and 2D [12], followed
by other spectacular demonstrations of condensed matter
physics phenomena as the realization of a Tonks gas in

a e-mail: christoph.maschler@uibk.ac.at

1D [13,14] and the Berezinskii-Kosterlitz-Thouless phase
transition in 2D [15]. Theoretically many more proposals
to apply these methods to spin systems and investigate
further fascinating properties of strongly correlated sys-
tems were put forward (see [16] for a review).

In all of these approaches, the light fields were approx-
imated by classical, externally prescribed fields indepen-
dent of the atoms. This requires intense light, far detuned
from any atomic transition. Of course this assumption
holds no longer if the light, which generates the optical
lattice, is enhanced by an optical resonator. In this case —
given a sufficient atom number N and atom-field coupling
g — the field itself becomes a dynamical quantity [17]
depending on the atomic distribution. As all atoms are
coupled to the same field modes, this immediately intro-
duces substantial long range interactions, which cannot
be ignored as in free space. In specially designed cases
this force induces coherently driven atoms to self-organize
in regular patterns as predicted in references [18,19] and
subsequently experimentally verified [20].

In addition, in a high-Q optical resonator relatively
low photon numbers are sufficient to provide strong forces.
This was demonstrated by trapping an atom in the field of
just a single photon [21,22]. Hence the inevitable photon
number fluctuations induced by cavity damping generate
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force fluctuations on the atoms causing diffusion. At the
same time as cavity photon loss constitutes a dissipa-
tion channel, it can also carry out energy and entropy of
the system. This opens possibilities for cooling of atomic
motion [23–26], as demonstrated by beautiful experiments
in the group of Rempe [27,28]. Since this cooling mecha-
nism does not require the existence of closed optical cycles
it could even be used for qubits [29] or to damp quantum
oscillations or phase fluctuations of a BEC coupled to a
cavity field [30,31].

For low photon numbers the quantum properties of the
light field get important as well and the atoms are now
moving in different quantized potentials determined by
the cavity photon number. Quantum mechanics of course
allows for superpositions of photon numbers invoking su-
perpositions of different optical potentials for the atoms.
First simplified models to describe this new physics were
recently proposed by us [32] and in parallel by other au-
thors [33]. As the intracavity field itself depends on the
atomic state (phase), different atomic quantum states are
correlated with different states of the lattice field with dif-
fering photon number distributions. In this way quantum
mechanics allows for the creation of very exotic atom-field
states, like a superposition of a Mott-insulator and super-
fluid phase, each thereof correlated with a different photon
number. Some quite exotic looking phase diagrams for this
system were already discussed in reference [33]. Without
resorting to the full complex dynamics of the system, the
quantum correlations between the field and the atomic
wavefunctions open the possibility of non-destructively
probing the atomic state by weak scattering of coherent
light into the cavity mode [34] and carefully analyzing its
properties [35].

It is quite astonishing, that experimental progress in
the recent years has made such systems experimentally
accessible and at present already several experimental
groups succeeded in loading a BEC into a high-Q opti-
cal cavity [36–40]. A reliable analysis of these experiments
has made more thorough theoretical studies of such sys-
tems mandatory.

In this work we concentrate on the study of an ultra-
cold gas in optical lattices including the quantum nature
of the lattice potential generated from a cavity field. This
extends and substantiates previous studies and predictions
on such a system by us [32] as well as other authors [33].
Here we limit ourselves to the case of a high-Q cavity
which strongly enhances a field sufficiently red detuned
from any atomic transition to induce an optical potential
without significant spontaneous emission. In particular we
address two different geometric setups, where either the
cavity mode is directly driven through one mirror, or the
atoms are coherently excited by a transverse laser and
scatter light into the cavity mode. The cavity potential
can also be additionally enhanced by some extra conser-
vative potential applied at a different frequency [41,42].
These two generic cases leads to quite different physical
behavior and allow to discuss several important aspects of
the underlying physics.

Fig. 1. (Color online) Scheme of atoms inside an optical cavity,
driven by two external pumping lasers. An additional conser-
vative lattice potential, independent of the intracavity field, is
realized by a far off-resonant dipole trap (FORT).

This paper is organized as follows. Section 2 is de-
voted to a systematic presentation of our model and var-
ious simplifying approximations as adiabatic elimination
of the excited states of the atoms and subsequent formu-
lation of an effective multi-particle Hamiltonian in sec-
ond quantized form. In Section 3, we specialize on the
simplest generic case of a coherently driven cavity and
approximate the corresponding Hamiltonian by adiabatic
elimination of the cavity field. We investigate the proper-
ties thereof, corresponding to the influence of the cavity on
the Mott-insulator to superfluid quantum phase-transition
and identify the regime of validity for the elimination of
the cavity field. Finally, we compare these results with
the dynamics of the full master equation. In Section 4 we
study the more complex case of atoms coherently driven
by a laser field transversal to the cavity axis, where it is
much harder to find valid analytical simplifications and
one has to resort to numerical studies of few particle dy-
namics. Finally, we conclude in Section 5.

2 Model

We start with N two-level atoms with mass m and transi-
tion frequency ωeg strongly interacting with a single stand-
ing wave cavity mode of frequency ωc. We also consider
coherent driving of the atoms at frequency ωp and with
maximal coupling strength h0 and of the cavity with am-
plitude η (see Fig. 1). Note that in the specific examples
later we will consider only one pump laser beam at a time.

Using the rotating-wave and electric-dipole approxi-
mation, we can describe a single atom of this system by
the Jaynes-Cummings Hamiltonian [43]

H(1) = H
(1)
A +H

(1)
R +H

(1)
Int. (1)

Explicitly the different Hamiltonians for the atoms, the
field mode and the interaction read:

H
(1)
A =

p̂2

2m
+ Ve(x)σ+σ− + Vg(x)σ−σ+ + �ωegσ

+σ−

− i�h(x)
(
σ+e−iωpt − σ−eiωpt

)
, (2a)

H
(1)
R = �ωca

†a− i�η
(
aeiωpt − a†e−iωpt

)
, (2b)

H
(1)
Int = −i�g(x)

(
σ+a− σ−a†

)
. (2c)
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Here h(x) denotes the mode-function of the transverse
pump field, g(x) denotes the cavity mode function and
the field operator a describes the annihilation of a cavity
photon with frequency ωc. Ve(x) and Vg(x) are external
trapping potentials for the atom in the excited and the
ground state, respectively. In order to change to slowly
varying variables we apply a unitary transformation with
operator U(t) = exp[iωpt

(
σ+σ− + a†a

)
], such that we end

up with the following single-particle Hamiltonian, using
the same symbols for the transformed quantities:

H
(1)
A =

p̂2

2m
+ Ve(x)σ+σ− + Vg(x)σ−σ+ − �∆aσ

+σ−

− i�h(x)
(
σ+ − σ−)

, (3a)

H
(1)
R = −�∆ca

†a− i�η
(
a− a†

)
, (3b)

H
(1)
Int = −i�g(x)

(
σ+a− σ−a†

)
, (3c)

where ∆c = ωp−ωc, ∆a = ωp−ωeg denotes the detunings
of the cavity and the atomic transition frequency from
the pumping field frequency. In order to describe the situ-
ation for N atoms, we use the single-particle Hamiltonian
of equations (1) and (3) in second quantization formal-
ism [44], i.e.,

H = HA +HR +HA−R +HA−P +HA−A. (4)

The terms in this expression correspond to the single par-
ticle terms in (2) and (3). Hence, HA and HR model the
free evolution of the atomic and the field variables, respec-
tively. They read as:

HA =
∫
d3x

[
Ψ †
g (x)

(
− �

2

2m
∇2 + Vg(x)

)
Ψg(x)

+ Ψ †
e (x)

(
− �

2

2m
∇2 − �∆a + Ve(x)

)
Ψe(x)

]
, (5)

where Ψg(x) and Ψe(x) denotes the atomic field operators
for annihilating an atom at position x in the ground state
and the excited state, respectively. They obey the usual
bosonic commutation relations

[
Ψf (x), Ψ †

f ′(x′)
]

= δ3 (x − x′) δf,f ′ (6a)
[
Ψf (x), Ψf ′(x′)

]
=

[
Ψ †
f (x), Ψ †

f ′(x′)
]

= 0, (6b)

for f, f ′ ∈ {e, g}. The field operator remains unchanged,
i.e., HR = −�∆ca

†a − i�η
(
a− a†

)
. The two-body inter-

action is modeled by a short-range pseudopotential [45],
characterized by the s-wave scattering length as, leading
to a Hamiltonian

HA−A =
U

2

∫
d3xΨ †

g (x)Ψ †
g (x)Ψg(x)Ψg(x), (7)

where U = 4πas�2/m. The coupling of the cavity field
with the atoms inside the cavity is given by

HA−R = −i�
∫
d3xΨ †

g (x)g(x)a†Ψe(x) + h.c., (8)

whereas the interaction with the laser beam, which coher-
ently drives the atoms, reads

HA−P = −i�
∫
d3xΨ †

g (x)h(x)Ψe(x) + h.c. (9)

Let us now calculate the Heisenberg equations for the var-
ious field operators, starting with the operator for the ex-
cited state, i.e.,

∂Ψe(x)
∂t

= i

[
�

2m
∇2 − Ve(x)

�
+∆a

]
Ψe(x)

− [g(x) a+ h(x)]Ψg(x). (10)

The first term corresponds to the free evolution of the
atomic state, whereas the second term describes the ab-
sorption of a cavity photon or a pump photon together
with the annihilation of a ground state atom. Similarly,
the equation for the ground state operator reads:

∂Ψg(x)
∂t

= i

[
�

2m
∇2 − Vg(x)

�
− U

�
Ψ †
g (x)Ψg(x)

]
Ψg(x)

+
[
g(x) a† + h(x)

]
Ψe(x). (11)

Finally, the Heisenberg equation for the cavity field oper-
ator is given by:

∂a

∂t
= i∆ca+ η +

∫
d3xg(x)Ψ †

g (x)Ψe(x). (12)

Again, the first term corresponds to the free field evolu-
tion, whereas the last two terms are driving terms of the
cavity field.

As we want to treat temperatures close to T = 0
we have to avoid heating and ensure weak atomic excita-
tion, where there is only negligible spontaneous emission.
In this limit we can adiabatically eliminate the excited
states from the dynamics of our system. This requires
large atom-pump detunings ∆a, where we also can ne-
glect the kinetic energy term and the trapping potential
in (10) compared to ∆a. Necessarily, we assume that the
field operators Ψg(x) and a vary on a much slower time
scale than the 1/∆a terms, such that we obtain:

Ψe(x, t) = − i

∆a
[h(x) + g(x)a(t)]Ψg(x, t). (13)

Inserting this expression for Ψe(x) into (11) and (12) leads
then to:

∂Ψg(x)
∂t

= i

[
�

2m
∇2 − Vg(x)

�
− h2(x)

∆a
− g2(x)

∆a
a†a

−h(x)g(x)
∆a

(
a+ a†

) − U

�
Ψ †
g (x)Ψg(x)

]
Ψg(x), (14)

∂a

∂t
= i

[
∆c − 1

∆a

∫
d3xg2(x)Ψ †

g (x)Ψg(x)
]
a

− i

∆a

∫
d3xh(x)Ψ †

g (x)Ψg(x) + η. (15)
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To discuss the underlying physics in a tractable form, the
trick is now to find an effective Hamiltonian Heff which
leads to the same dynamics as given by equations (14)
and (15). Thus this Hamiltonian has to obey:

i�
∂Ψg(x)
∂t

= [Ψg(x), Heff] and i�
∂a

∂t
= [a,Heff]. (16)

From this we can easily read off a possible effective
Hamiltonian of the form:

Heff =
∫
d3xΨ †

g (x)
{
− �

2

2m
∇2 + Vg(x)

+
�

∆a

[
h2(x) + g2(x)a†a+ h(x)g(x)

(
a+ a†

)]
}
Ψg(x)

+
U

2

∫
d3xΨ †

g (x)Ψ †
g (x)Ψg(x)Ψg(x)

− i�η
(
a− a†

) − �∆ca
†a. (17)

The corresponding single particle Hamiltonian, which
leads to this second quantized Hamiltonian is1

H
(1)
eff =

p2

2m
+ Vg(x) +

�

∆a

[
h2(x) + g2(x)a†a

+h(x)g(x)
(
a+ a†

)] − i�η
(
a− a†

) − �∆ca
†a. (18)

This simplified effective atom-field Hamiltonian will be
the basis of our further considerations. It is, however, still
much too complex for a general solution and we will have
to make further simplifying assumptions. Hence at this
point we will restrict ourselves to 1D motion along the
cavity axis. In an experimental setup this could be actu-
ally realized by a deep radial trapping potential, but we
think that at least qualitatively the model should also cap-
ture the essential physics if some transverse motion of the
particles was allowed. As one consequence this assump-
tion requires a rescaling of the effective two-body interac-
tion strength [46], which enters as a free parameter in our
model anyway.

Mathematically we thus end up with a one-dimensional
optical lattice, which is partly generated by the resonator
field and superimposed onto a prescribed extra trapping
potential Vg(x) = Vg(x). The mode function of the cav-
ity along the axis is approximated by g(x) = g(x) =
g0 cos(kx) and the transverse laser beam forms a broad
standing wave h(x) = h0 cos(kpy), which in our one-
dimensional considerations (y = 0) is just a constant term
that we can eventually omit in (17).

As we consider external pumping of atoms and mode,
we essentially treat an open system and we have to deal
with dissipation as well. Such dissipation processes are
modeled by Liouvillean terms L appearing in the master
equation for the atom-field density operator, i.e.,

	̇ =
1
i�

[Heff, 	] + L	. (19)

1 It is also possible, first to eliminate the excited state in
the single particle dynamics, which leads to the same expres-
sion (18) and then implement this expression in second quan-
tization formalism.

As mentioned above, we assume large atom-pump detun-
ing ∆a, suppressing spontaneous emission to a large ex-
tend. However, we still have to deal with the cavity loss κ,
which will thus be the dominant dissipation process. Hence
the corresponding Liouvillean using a standard quantum
optics approach [49] reads:

L	 = κ
(
2a	a† − a†a	− 	a†a

)
. (20)

Equivalently in the corresponding Heisenberg equation for
the field operator, cavity loss leads to damping terms and
fluctuations, so that it then reads:

ȧ =
{
i

[
∆c − g2

0

∆a

∫
dxΨ †

g (x) cos2(kx)Ψg(x)
]
− κ

}
a

− i
g0h0

∆a

∫
dxΨ †

g (x) cos(kx)Ψg(x) + η + Γin. (21)

Since we will be mainly interested in normally ordered
quantities and assume vacuum (T = 0) outside the cavity,
the input noise operators Γin will not enter in the dynam-
ics, such that we will omit them later.

Let us now proceed and transform the Hamiltonian
into a more commonly known form. Following standard
procedures, one constructs maximally localized eigenfunc-
tions at each site and expands the atomic field operator
Ψg(x) in terms of single atom Wannier functions [48]

Ψg(x) =
∑

n

∑

k

bn,kwn(x− xk), (22)

where bn,k corresponds to the annihilation of a particle
in the n−th energy band at site k. Since we assume the
involved energies to be much smaller than the excitation
energies to the second band, we are able to keep only the
lowest vibrational state in the Wannier expansion, i.e.,
Ψg(x) =

∑
k bkw(x−xk), where w(x) = w0(x). This yields

to the following Hamiltonian:

H =
∑

k,l

Eklb
†
kbl +

(
�U0a

†a+ Vcl

) ∑

k,l

Jklb
†
kbl

+�ηeff
(
a+ a†

) ∑

k,l

J̃klb
†
kbl − i�η

(
a− a†

)

+
1
2

∑

i,j,k,l

Uijklb
†
ib

†
jbkbl − �∆ca

†a, (23)

where the addendum eff of the Hamiltonian is omitted.
Here we introduced an important characteristic param-
eter of atomic cavity QED, namely the refractive index
U0 of a single atom at an antinode, which is given by
U0 = g2

0/∆a. It gives the frequency shift of the cavity mode
induced by a single atom at an antinode and also corre-
sponds to the optical lattice depth for an atom per cavity
photon [17]. Similarly, the parameter ηeff = g0h0/∆a de-
scribes the position dependent effective pump strength of
the cavity mode induced by the scattered light from a
single atom at an antinode.

Note that the Wannier state expansion equation (22)
depends on the potential depth. Thus the Wannier func-
tions and the corresponding matrix elements depend on
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the cavity field and thus in principle are dynamic quan-
tities. However, they keep the same functional form with
a few changing parameters, which have to be determined
consistently. This is of course consequently also true for
the various coupling parameters in the Hamiltonian. The
above model thus can only be valid as long as the single
band approximation stays valid during the system dynam-
ics and the parameters don’t change to rapidly. In the
special but rather interesting case, where the atoms are
trapped solely by the cavity field [21,22] this is not valid
for very low photon numbers. Here a single photon number
jump will induce excitation to higher bands, which induces
nonlinear dynamics beyond the single band model.

In practice this problem can be circumvented by
adding an additional external trapping potential Vg(x)
to the model, which guarantees a minimum potential
depth even in the case of zero cavity photons. Exper-
imentally this is feasible, for instance, with a far de-
tuned, off-resonant dipole trap (FORT) [50], i.e., Vg(x) =
Vcl cos2(kFx), where kF denotes the wave number of the
FORT field. In the experimental realization, the frequency
of the corresponding laser field ωF is only very few free
spectral ranges separated from the main cavity frequency
ωc [27,51,52]. Hence, in the vicinity of the cavity cen-
ter, the coincidence of the FORT field and the cavity
field is very good, and we can replace in good agreement
cos2(kFx) with cos2(kx).

Let us remark here that by including this extra poten-
tial, we can keep our model and allow for further analytical
analysis of the dynamics, but we also have thrown out a
great deal of interesting physics already. Actually, for very
few atoms one still can solve the full Hamiltonian with-
out the restriction to the lowest bands by quantum Monte
Carlo wavefunction simulations. Some early results of such
simulations can be found in references [55,56]. However,
this is not the subject of this work and we will proceed
here with the effective lattice model under the assumption
of a deep enough extra potential or strong enough cavity
fields.

Note that in (23), in contrast to the case of the Bose-
Hubbard model in a classical optical lattice, where the
matrix elements of the potential and kinetic energy can be
merged, here two separate parts exist due to the presence
of the cavity field operators in the Hamiltonian. Explicitly
they read as:

Ekl =
∫
dxw(x − xk)

(
− �

2

2m
∇2

)
w(x − xl), (24a)

Jkl =
∫
dxw(x − xk) cos2(kx)w(x − xl), (24b)

J̃kl =
∫
dxw(x − xk) cos(kx)w(x − xl). (24c)

The on-site elements Jkk and Ekk are independent of the
lattice site k, whereas J̃kl changes sign periodically, i.e.,
J̃kk = −J̃k+1,k+1 due to the cos, which has twice the pe-
riodicity of the lattice. This also accounts for J̃k,k+1 = 0.
Note that the existence of this term implies that two
adjacent wells acquire different depths forcing us to re-
assure that for the case of the directly pumped atom

ηeff(a+a†) cos(kx) is only a small perturbation of the lat-
tice. As the next-nearest elements are typically two orders
of magnitude smaller than the nearest-neighbor term [3]
they can safely be neglected (tight-binding approxima-
tion). Hence we label the site-independent on-site matrix
elements with E0, J0 and J̃0, whereas E and J are the
site-to-site hopping elements. Furthermore, in the case of
the nonlinear interaction matrix elements,

Uijkl = g1D

∫
dxw(x − xi)w(x − xj)w(x − xk)w(x − xl),

(25)
we can omit the off-site terms since they are also typ-
ically two orders of magnitude smaller than the on-
site interaction matrix elements. Note that g1D is the
one-dimensional on-site interaction strength, originating
from an adjustment of the scattering length as, due to
the transversal trapping [46]. As a central result of our
studies we therefore obtain a generalized Bose-Hubbard
Hamiltonian:

H = E0N̂ + EB̂ +
(
�U0a

†a+ Vcl

) (
J0N̂ + JB̂

)

+�ηeff
(
a+ a†

)
J̃0

∑

k

(−1)k+1n̂k − �∆ca
†a

−i�η (
a− a†

)
+
U

2

∑

k

n̂k (n̂k − 1), (26)

where the nonlinear on-site interaction is characterized
by U = g1D

∫
dx |w(x)|4 . In addition, we introduced the

number operator N̂ =
∑

k n̂k =
∑
k b

†
kbk and the jump

operator B̂ =
∑

k

(
b†k+1bk + h.c.

)
. Note that for strong

classical intracavity fields and no transverse pump we re-
cover the standard Bose-Hubbard Hamiltonian.

Finally, let us remark that we now can also rewrite the
field Heisenberg equation (21) in the above terms, which
gives:

ȧ =
{
i
[
∆c − U0

(
J0N̂ + JB̂

)]
− κ

}
a+ η

− iηeffJ̃0

∑

k

(−1)k+1n̂k. (27)

Here we clearly see that besides the number operator N̂
for the atoms also the coherence properties via the op-
erator B̂ and statistics via n̂k play a decisive role in the
field dynamics. As this field acts back on the atomic mo-
tion, interesting and complex coupled dynamics can be
expected from this model, which was partly already dis-
cussed in [32,33] and will be elucidated more in the re-
mainder of this work.

3 Cavity pump

Let us now turn to the conceptually simplest case and re-
strict the pumping only to the cavity, where only a single
mode is coherently excited (cavity pumping). This mode
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will generate an optical potential in addition to the pre-
scribed external potential. For large enough photon num-
bers the external potential can even be omitted and the
particles are trapped solely by the cavity field. As essen-
tial ingredient in the dynamics, the identical coupling of
all atoms to this same field mode induces a long-range
interaction between the atoms independent of their posi-
tions. Setting ηeff = 0, the Hamiltonian (26) is reduced to:

H = E0N̂ + EB̂ +
(
�U0a

†a+ Vcl

) (
J0N̂ + JB̂

)

−�∆ca
†a− i�η

(
a− a†

)
+
U

2
Ĉ. (28)

Here we introduced Ĉ =
∑

k n̂k (n̂k − 1) for the operator
of the two-body on-site interaction. Still we see that the
corresponding Heisenberg equation for the cavity field:

ȧ =
{
i
[
∆c − U0

(
J0N̂ + JB̂

)]
− κ

}
a+ η (29)

depends on atom number and coherence. For very weak
fields this yields an atom statistics dependent cavity trans-
mission spectrum, which was studied in some detail in
reference [35]. Here we go one step further and study the
dynamical back action of the field onto atomic motion
and field mediated atom-atom interaction, which appear
at higher photon number. As the model is still rather com-
plex we need some further approximations at this point in
order to catch some qualitative insight.

3.1 Field-eliminated Hamiltonian

Although the influence of the cavity field on the atoms
is equal on all particles, their common interaction gen-
erates a dynamics much more complex than for a Bose-
Hubbard model with prescribed external potential. This
is more analogous to real solid state physics where the
state of the electrons also acts back on the potentials. To
exhibit the underlying physics, we will now derive an ap-
proximate Hamiltonian, which solely depends on particle
variables by adiabatically eliminating the field (28). This
should be valid when the damping rate κ of the cavity
generates a faster time scale than the external atomic de-
grees of freedom. Actually as tunneling is mostly a very
slow process (much slower than the recoil frequency), this
will be almost always the case in practical experimental
setups. To this end, we simply equate (29) to zero and
obtain formally a = η/{κ − i[∆c − U0(J0N̂ + JB̂)]}. In
the following we constrain ourselves to the case of a fixed
number of atoms, i.e., N̂ = N1. The very small tunneling
matrix element J can be used as an expansion parameter,
leading to:

a ≈ η

κ− i∆′
c

[
1− i

U0J

κ− i∆′
c

B̂ − (U0J)2

(κ− i∆′
c)2

B̂2

]
, (30)

where we introduced a shifted detuning∆′
c = ∆c−U0J0N .

In order to obtain an effective Hamiltonian, where the
cavity degrees of freedom are eliminated, we replace the

field terms in (28), by the steady state expressions (30),
as well as in the Liouville super operator (20). Note, that
this is more appropriate than the naive approach of a re-
placement just in the Hamiltonian, as has been done in
our former work [32]. If we consider terms up to order
∝ J2, the exchange in the Hamiltonian yields:

Had = (E + JVcl)B̂ +
U

2
Ĉ

+
�U0Jη

2

κ2 +∆′
c
2

(
∆′
c
2 − κ2

κ2 +∆′
c
2 B̂ − 3U0J∆

′
c

κ2 +∆′
c
2 B̂

2

)

. (31)

Next, by applying the same procedure to the Liouville
equation – again up to terms ∝ J2 – we obtain an adia-
batic Liouville operator:

Lad	 = −i 2U0Jκ
2η2

(
κ2 +∆′

c
2
)2

[
B̂ +

2∆′
cU0J

κ2 +∆′
c
2 B̂

2, 	

]

+
κU2

0J
2η2

(
κ2 +∆′

c
2
)2

(
2B̂	B̂ − B̂2	− 	B̂2

)
. (32)

The Lindblad terms in the second line are real, corre-
sponding to dissipation, whereas the first, imaginary term
corresponds to a unitary time evolution and has therefore
to be added to the adiabatic Hamiltonian, i.e.,

Had → Had +
2�U0Jκ

2η2

(
κ2 +∆′

c
2
)2

(
B̂ +

2∆′
cU0J

κ2 +∆′
c
2 B̂

2

)
.

Altogether, we end up with a Hamiltonian, where the cav-
ity field has been eliminated:

Had = (E + JVcl)B̂ +
U

2
Ĉ

+
�U0Jη

2

κ2 +∆′
c
2

(

B̂ +
U0J∆

′
c

κ2 +∆′
c
2

κ2 − 3∆′
c
2

κ2 +∆′
c
2 B̂

2

)

. (33)

The loss rate of the cavity is described by the remaining
dissipative part of (32):

Lad	 =
κU2

0J
2η2

(
κ2 +∆′

c
2
)2

(
2B̂	B̂ − B̂2	− 	B̂2

)
. (34)

Note, that the above adiabatic elimination procedure
is not completely unambiguous due to ordering free-
dom. Nevertheless it should give a qualitatively correct
first insight. An alternative way of deriving an effective
Hamiltonian, depending solely on particle observable is
similar to (16) and (17). This amounts to a replacement
of the field variables with (30) in the Heisenberg equation
for the external atomic degrees of freedom, which read as
follows:

ḃk =
1
i�

[(
E + JVcl + �U0Ja

†a
)
(bk−1 + bk+1) − Un̂kbk

]
.

(35)
A naive replacement of the field operator a and its adjoint
a† by (30) in the above expression leads to an equation for
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ḃk, which cannot be generated from an effective adiabatic
Hamiltonian in the form ḃk = −i/�[bk, Had]. Hence, before
substituting the adiabatic field operators, we have to sym-
metrize the expression containing the field term in (35) in
the form

ḃk = − i

�
[(E + JVcl) (bk−1 + bk+1) − Un̂kbk]

− i�U0J

2
[
a†a (bk−1 + bk+1) + (bk−1 + bk+1) a†a

]
. (36)

This form enables us to describe the dynamics of bk by a
Heisenberg equation with an effective Hamiltonian, which
up to second order in J reads:

Had = (E + JVcl)B̂ +
U

2
Ĉ

+
�U0Jη

2

κ2 +∆′
c
2

(
B̂ +

U0J∆
′
c

κ2 +∆′
c
2 B̂

2

)
. (37)

The terms in the second line stem from the field terms
in (36). Although this Hamiltonian looks a bit different
from the first version derived before (33), their properties
are – within their regime of validity – in very good agree-
ment as long as hopping is slow compared to damping.

To exhibit the physical content of this Hamiltonian
one can look at its eigenstates. As first step we calcu-
late the Mott insulator state (see Eq. (49)) fraction of the
lowest energy state |ψ〉 of these two Hamiltonians, i.e.,
pMI = |〈ψ|MI〉|2 (see also Fig. 4), as a function of the
on-site interaction energy for different values of ∆′

c. This
will indicate changes of position and behavior of the Mott
insulator superfluid transition (see Fig. 4). To compare
the two approximate Hamiltonians in Figure 2, we plot
the difference of the Mott insulator fraction of the ground
state of (33) and (37), as well as the difference of the
steady state photon number. Obviously the two Hamilto-
nians, converge in the limit of large cavity decay κ. This
can also be seen in Figure 2, where the dashed-dotted line
depicts the case of a smaller ∆′

c (which is equivalent to an
enlarged κ), showing a strongly enhanced coincidence.

3.2 Field-eliminated density operator

Let us now use a further and somehow more systematic
alternative approach to eliminate the cavity field dynam-
ics from the system evolution directly from the Liouville
equation by following a method proposed by Wiseman and
Milburn [53], which is valid for large κ and low photon
numbers. In this case we have

∣∣
∣
∣
〈Hat〉
κ

∣∣
∣
∣ ∼

∣∣
∣
∣
�U0〈a†a〉

κ

∣∣
∣
∣ = ε	 1, (38)

where Hat is the atomic part of (28), i.e., Hat =
(E + VclJ) B̂ +UĈ/2. Again the total atom number N̂ is
supposed to be constant. This allows to expand the den-
sity operator in powers of ε, corresponding to states with

Fig. 2. (Color online) (a) Contribution of the Mott-insulator
state to the ground state pMI = |〈ψ|MI〉|2 of (37) as function
of the 1D on-site interaction strength in units of ERd (d is the
lattice constant). (b) Logarithmic difference of pMI, calculated
with the groundstate of (37) and (33). (c) Logarithmic differ-
ence of the adiabatically eliminated photon number 〈ψ|a†a|ψ〉
with a from (30) for the two different ground states. The pa-
rameters are κ = 1/

√
2ωR, η = 2.35 ωR and ∆′

c = −κ (red,
solid line), κ = 4ωR, η = 12.5ωR and ∆′

c = κ (blue, dashed
line) and κ = 4ωR, η = 10ωR and ∆′

c = −κ/10 (black, dashed-
dotted line). In any of the curves, we set Vcl = 0 and U0 = −ωR.
Here ωR is the frequency corresponding to the recoil energy,
i.e., ER = �

2k2/(2m) = �ωR.

increasing photon number:

	 = 	0 ⊗ |0〉a〈0| + (	1 ⊗ |1〉a〈0| + h.c.) (39)
+	2 ⊗ |1〉a〈1| + (	′2 ⊗ |2〉a〈0| + h.c.) +O

(
ε3

)
.

Here 	i are density operators for the particle variables,
corresponding to the order i of magnitude in the expan-
sion parameter ε. We substitute this expression into the
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Liouville equation (19) with the Hamiltonian from (28),
which leads to the following set of equations:

	̇0 =
1
i�

[Hat, 	0] − η
(
	1 + 	†1

)
+ 2κ	2 (40a)

	̇1 =
1
i�

[Hat, 	1] − η
(√

2	′2 + 	2 − 	0

)
− κ	1 (40b)

+ i
[
∆c − U0

(
J0N + JB̂

)]
	1 + κO

(
ε4

)

	̇2 =
1
i�

[Hat, 	2] + η
(
	1 + 	†1

)
− 2κ	2 (40c)

− iU0

[
J0N + JB̂, 	2

]
+ κO

(
ε4

)

	̇′2 =
1
i�

[Hat, 	
′
2] +

√
2η	1 − 2κ	′2 (40d)

+ 2i
[
∆c − U0

(
J0N + JB̂

)]
	′2 + κO

(
ε4

)
.

Now we adiabatically eliminate the off-diagonal elements
	1 and 	′2. Setting their derivations in (40b) and (40d)
to zero and neglecting terms with respect to the assump-
tion (38), we obtain:

	′2 =
η√
2A

	1 +O
(
ε3

)
. (41)

This is consistent with the assumption 	′2 ∼ O
(
ε2

)
. Here

we defined A = κ− i∆′
c + iU0JB̂. Putting (41) into (40b)

and neglecting the terms consistent with the order of the
expansion, such that 	1 ∼ O (ε), it follows that:

	1 =
η

A+ η2/A
(	0 − 	2) +O

(
ε4

)
. (42)

We simplify this expression, 	1 ≈ ηA−1(	0 − 	2), which
is consistent with the above expansion and substitute it
into (40a) and (40c):

	̇0 =
1
i�

[Hat, 	0] + 2κ	2

− η2
[
A−1 (	0 − 	2) + (	0 − 	2)A†−1

]
, (43a)

	̇2 =
1
i�

[Hat, 	2] − iU0

[
J0N + JB̂, 	2

]
− 2κ	2

+ η2
[
A−1 (	0 − 	2) + (	0 − 	2)A†−1

]
. (43b)

In order to formulate a master equation for the particle
variables we have to use the reduced density operator,
where we trace over the field variables, i.e., 	at = tr(	) =
	0 + 	2 +O

(
ε4

)
. With (43a) and (43b) we see that:

	̇at =
1
i�

[Hat, 	at] − iU0

[
J0N + JB̂, 	2

]
. (44)

As a further approximation, which is also consistent with
the expansion order of the assumption (38), we set (43b)
to zero and neglect [Hat, 	2] and all other terms smaller
than O

(
ε3

)
. Then we can express 	2 through 	0:

	2 =
η2

2κ

[
A−1	0 + 	0A

†−1
]
. (45)

Within this order of magnitude of ε we can replace 	0 with
	at, leading us finally to the following master equation for
the reduced density operator of the particle variables:

	̇at =
1
i�

[Hat, 	at] (46)

−iU0η
2

2κ

[
J0N + JB̂,

(
A−1	at + 	atA

†−1
)]
.

Note that this model also contains a damping part, since
the operator A is not hermitian. Let us investigate this
damping, by expanding the inverse of A up to first order in
J , which is consistent with the order of magnitude in (46).
Hence we replace A−1 and its adjoint in this equation by

A−1 ≈ 1
κ− i∆′

c

(
1 − i

U0J

κ− i∆′
c

B̂

)
(47)

and its adjoint. Since we are restricted on a subspace of
constant atom number, the Liouville equation reads as
follows:

	̇at =
1
i�

[
Hat +

�U0η
2

κ2 +∆′
c
2

(
JB̂ +

U0∆
′
cJ

2

κ2 +∆′
c
2 B̂

2

)
, 	at

]

− (JU0η)2

2κ
κ2 −∆′

c
2

(
κ2 +∆′

c
2
)2

[
B̂,

[
B̂, 	at

]]
. (48)

Obviously, the non-dissipative part of this equa-
tion agrees perfectly with our adiabatically eliminated
Hamiltonian (37) and the structure of the dissipative part
is of the same Lindblad form as (34). Note that an expan-
sion of A−1 to higher order in J would also provide us the
correct next-order term of (37) plus an extra term in the
Liouville-equation, which does not correspond to unitary
time evolution, as described by a Hamiltonian. This con-
firms the usefulness of the naive elimination method, also
used in reference [32].

3.3 Quantum phase transitions in an optical lattice

In Section 3.1 we derived two approximate
Hamiltonians (33) and (37) describing our system of
cold atoms in an optical lattice. To a large extend they
still implement the well-known BH model, but with
parameters controllable via cavity detuning and some
additional nonlocal interaction terms. Let us now inves-
tigate their properties in some more detail. One of the
key features of optical cavities is the feedback mechanism
between atoms and cavity field. Hence, computations
are a subtle issue, since the matrix elements in the BH
Hamiltonian depend on the field amplitude, which itself
depends on the atomic positions. In principle a rigorous
treatment would consist of calculating the matrix ele-
ments (24) for every photon Fock state and treating the
parameters of the BH model as operators. To avoid the
full complexity of such an approach we will first assume
only a weak dependence of the Wannier functions on the
mean cavity photon number 〈a†a〉, which allows us to
proceed analytically. For any set of operating parameters
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Fig. 3. Self-consistent photon number in the case of four
particles in four wells without on-site interaction. Parameters
are U0 = −ωR and κ = ωR.

we then calculate the matrix elements in a self-consistent
way replacing the photon number operator by its average
in the iteration process. Explicitly this is implemented by
starting from some initial guess J (0)

0 , E
(0)
0 , J (0), E(0) in

the Hamiltonian (37), from which we calculate the ground
state |ψ(0)〉. By use of this state we obtain an initial mean
photon number 〈ψ(0)|a†a|ψ(0)〉, with the steady-state field
operator (30). Now we can calculate the matrix elements
J

(1)
0 , E

(1)
0 , J (1), E(1) again leading to a new ground state

|ψ(1)〉 and a new mean photon number 〈ψ(1)|a†a|ψ(1)〉.
Proceeding iteratively, in most cases the fixpoint is
reached already after very few iterations and the system
properties are then calculated with this self-consistent
matrix elements. The convergence speed decreases near
the resonance for the cavity photon number (cf. Fig. 3),
which occurs for ∆c = U0J0N − κ, especially for large
U0. Introducing some damping in the iteration procedure
easily resolves this issue, though. As we mentioned
already before, we restrict the model on a subspace
HN of a fixed total particle number N in an optical
lattice of M sites. A basis of HN consists of the states
|N, 0, 0, . . . , 0〉, |N − 1, 1, 0, . . . , 0〉, . . . , |0, 0, . . . , 0, N〉.
Since we are interested in the quantum phase transition
between the Mott insulator (MI) and the superfluid (SF)
state occurring during the variation of certain external
parameters, we investigate the contributions of these
specific states to the ground state of the atomic system.
The Mott insulator state is a product of Fock states with
uniform density distribution, i.e.,

|MI〉 = |n, n, . . . , n〉, (49)

with n = N/M . In contrast, in a SF state each atom is
delocalized over all sites. It is given by a superposition
of Fock states, namely of all possible distributions of the
atoms in the lattice sites, i.e.,

|SF〉 =
∑

k1,k2,...,kM

N !√
MN

√
k1!k2! · · · kM !

|k1, k2, . . . , kM 〉,

(50)

Fig. 4. (Color online) Cavity influence of the Mott insulator
to superfluid transition by means of a comparison of the oc-
cupation probabilities pMI and pSF for a purely quantum field,
i.e., Vcl = 0, and a purely classical field, i.e., η = 0, as a func-
tion of the dimensionless one-dimensional on-site interaction
strength g1D/(dER). We choose η such that both potentials
are of equivalent depth, V = 5.5ER, for zero on-site in-
teraction (g1D = 0). The quantum and classical case is de-
picted with solid and dashed lines, respectively. In (a) we set
(U0, κ, η) = (−1, 1/

√
2,
√

5.5)ωR and ∆c − U0J0N = κ. (b)
The same as (a) but with ∆c − U0J0N = −κ.

with
∑M

i=1 ki = N . Although the density in the superfluid
state is also uniform 〈n̂i〉SF = N/M and therefore equal to
the Mott insulator state, its properties are fundamentally
different. This manifests especially in the spectra and an-
gle dependence of scattered light, providing for new, non-
destructive probing schemes for the atomic phases [34,35].

Let us now investigate the influence of the cavity on
position and shape of the well-known “classical” MI-SF-
transition [3–5]. To do so, we compare the two cases of a
pure quantum field, i.e., Vcl = 0 in (37), and a classical
field (η = 0) provided by Vcl for generating the optical
potential. We choose η in such a way, that at zero on-site
interaction, g1D = 0, both potentials are equally deep. As
depicted in Figure 4, the influence of the cavity strongly
depends on the detuning ∆c. Two contributions arise from
the quantum nature of the potential. On the one hand the
potential depth and therefore the matrix elements depend
on the atomic state. For a classical potential this is clearly
not the case. On the other hand the cavity mediates long-
range interactions via the field, which corresponds to the
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Fig. 5. (Color online) Influence of the long-range interaction
on the Mott insulator to superfluid phase transition, mediated
via the B̂2 term in (37). The solid line shows the probabil-
ity for the Mott insulator state as a function of dimensionless
one-dimensional on-site interaction strength g1D/(dER) for a a
purely quantum field, i.e., Vcl = 0. The dashed line corresponds
to the probability for the same Hamiltonian, neglecting the B̂2

term. The parameters are the same as in Figure 4b.

B̂2-term in (37). If a potential depth near the phase tran-
sition point for the quantum case is associated with some
certain average photon number n̄, then n̄ ± 1 are associ-
ated with different atomic phases. This means that the
ground state of the quantized cavity field contains contri-
butions of different atomic states, each of them correlated
with the corresponding photon number. In this sense pho-
ton number fluctuations drive particle fluctuations. De-
pending on parameters the former or the latter effect con-
tributes more. In Figure 4 this is shown for four atoms in
four wells, where we calculated the occupation probability
for the Mott insulator pMI = |〈ψ|MI〉|2 and the superfluid
state pMI = |〈ψ|SF〉|2 for the ground state |ψ〉 of (37) as a
function of the dimensionless one-dimensional on-site in-
teraction strength g1D/(dER) for a purely classical and
a purely quantum case. For ∆c − U0J0N = κ, photon
number fluctuations enhance particle fluctuations, shift-
ing the superfluid to Mott insulator transition to higher
values of the on-site interaction (Fig. 4a). However, if we
choose ∆c − U0J0N = −κ, the influence of the atomic
state on the potential depth exceeds the cavity-mediated
long-range interactions, strongly shifting the transition to
lower values of g1D (Fig. 4b). Note, that for this behavior,
the cavity loss rate must be – although within the bad cav-
ity limit – small enough. For larger κ the quantum effects
disappear and the ground states for classical and quantum
potential coincide.

To correctly address the long-range interactions, cor-
responding to the B̂2 term in (37), we calculate the contri-
bution of the Mott insulator state to the ground state of
this adiabatic Hamiltonian including and omitting the B̂2

part, respectively. Although, in the situation of Figure 4b
the net effect enhances the phase transition, the cavity
mediates long-range coherence via B̂2, which can be seen
by enlarged particle number fluctuations as shown in Fig-
ure 5. Although the effect is not too strong as it depends

on J2 is has infinite range and will get more important for
large particle numbers.

Finally, we exhibit the transition from a cavity field
with quantum properties towards a classical optical lat-
tice. This relies on the assumption that a very bad cav-
ity should be almost like no cavity and increasing κ, but
keeping the potential depth constant, approaches the clas-
sical limit. Hence, the effects of the quantum nature and
feedback of lattice potential should disappear and the
ground states for classical and quantum potential coin-
cide. The adiabatic eliminated Hamiltonian then has to
approach the classical Bose-Hubbard Hamiltonian. This
is shown in Figure 6 for a system of four atoms in four
wells, where we simultaneously increase κ and η, keeping
U0η

2/κ2 = −6ER fixed. For every κ we calculated the
value of the on-site interaction g1D, where the contribu-
tions of the Mott state and the superfluid state to the
ground state of (37) are equal, i.e., |〈ψ|MI〉| = |〈ψ|SF〉|.
This is compared with the corresponding value of the
interaction strength at the same intersection point of
a purely classical Bose-Hubbard model with a potential
depth of Vcl = −6ER. We see that the transition occurs
already at a cavity linewidth of only an order of magni-
tude larger than the recoil frequency, where the deviation
is small already. Thus one needs quite good resonators to
see the quantum shift in the phase transition.

3.4 Comparison with the full dynamics of the master
equation

Using the approximate adiabatic model with eliminated
field we have found important changes in the physics so
far. Even stronger effects are to be expected in the limit
of less and less cavity damping and stronger atom field
coupling. Let us now investigate some first signs of this
and test the range of validity of the above model in this
limit. To do so we have to resort to numerics and compare
solutions of the full master equation (19) with the ground
states of the adiabatically eliminated Hamiltonian (37).
Obviously solving the full master equation is a numeri-
cally demanding task. Nevertheless, by constraining to few
atoms in few wells we are able to solve the equations and
reveal the essential physical mechanisms. The limit of the
band model description is of course reached for atoms cou-
pled strongly to a cavity field with only very few photons
and no additional classical potential Vcl present. Here very
strong changes in the tunneling amplitudes occur when-
ever a photon leaks out of the cavity and reduces the mo-
mentary potential depth. This leads to strongly enhanced
particle hopping. For instance, one can think of the sit-
uations “one photon present” and “no photon present”,
where the atoms can freely move within the cavity in the
absence of an external trap. On the other hand one ex-
tra photon can almost block hopping. Note that in this
case the ground state atomic configuration can be close
to superfluid for a low photon number and close to an
insulator state for a higher photon number. As our ma-
trix elements depend only on the mean photon number
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Fig. 6. (Color online) Value of the on-site interaction g1D,
where the contributions of the Mott state and the superfluid
state to the ground state of (37) are equal, i.e., |〈ψ|MI〉| =
|〈ψ|SF〉|, as a function of κ (solid line) for a system of
four atoms in four wells. Simultaneously we increase η, such
that U0η

2/κ2 = −6ER is fixed. Obviously, the correspond-
ing value at the same intersection point of a purely clas-
sical Bose-Hubbard Hamiltonian with Vcl = −6ER is con-
stant (dashed line). Parameters are U0 = −ωR, κ = 4ωR and
∆C − U0N = −κ.

〈a†a〉, these differences cannot be taken into account in
an adiabatic model.

We can explicitly show this behavior by reducing the
coupling strength U0, but keeping the average potential
depth fixed (equal matrix elements), by means of a higher
average cavity photon number, which leads to strongly re-
duced photon number fluctuations. The most simple sit-
uation to discuss this issue is one atom loaded in a lat-
tice consisting of only two wells. Here, |l〉 (|r〉) means the
left (right) of the two wells, with a potential minimum
at x = 0 (x = π). The hopping operator B̂ then de-
scribes tunneling from the left well to the right well and
vice versa. In Figure 7 we show this tunneling behavior
by plotting the mean position of the single atom 〈kx(t)〉.
The atomic ground state of this system is the symmet-
ric state |ψ0〉 = (|l〉 + |r〉) /√2 having a mean position of
〈kx〉ψ0 = π/2. Decreasing U0, increasing η and adjusting
∆c, yields different mean photon numbers 〈a†a〉, but equal
average lattice potential depth V = U0〈a†a〉. (We do not
consider an additional classical potential here.) If only few
photons are present, we observe large fluctuations of the
field and the system damps fast to the ground state. As
the photon number increases, the potential approximates
a classical potential as expected, where there is no de-
phasing. The (nearly) equal oscillation frequencies show
that the matrix elements coincide for the different photon
numbers. This is an interesting feature corresponding to
the quantum nature of the potential. In contrast to the
Bose-Hubbard model for a classical optical lattice, lattice
depth and interaction strength are not the only important
system parameters. Quantum fluctuations of the potential
are an additional source of atomic fluctuations, playing an
essential role in the evolution of the system. Obviously, if

Fig. 7. (Color online) Mean position 〈kx(t)〉 of a single atom
in two wells. We adjusted U0, η,∆c in such a way, that the
mean number of cavity photons increases, but the lattice depth
stays nearly constant: V = �U0〈a†a〉 = −8ER. Starting with
(U0, η, κ) = (−50, 10, 25) (in units of ωR) and ∆c = J0U0, fol-
lowed by a successive reduction of U0 by a factor of 5, together
with an increase of η by a factor of

√
5 and a proper adjust-

ment of ∆c, this leads to mean photon numbers of 0.16 (solid
line), 0.8 (dashed line), and 4 (dashed-dotted line). Initially,
the atom is in the right well.

only an external potential is present and the atom is no
longer coupled to the cavity field (U0 = 0), the system is
undamped, due to the lack of the only dissipation chan-
nel present, cavity loss. In this case the Hamiltonian (28)
reduces to H = (E + JVcl)B̂ + U/2Ĉ, and the atom, ini-
tially not in the symmetric state, oscillates between the
left and right well. Note that a more rigorous treatment
of operator-valued matrix elements – as described in the
previous section – would be capable of describing this be-
havior correctly. Alternatively for few atoms Monte Carlo
wave function simulations of the full Hamiltonian could
be performed, allowing for processes, where the particle
leaves the lowest band [54].

Obviously, this enhancement of atom fluctuations for
low photon numbers also affects the dynamics of several
atoms. We demonstrate this for the case of two atoms
in two wells. We assume strong coupling with few cavity
photons and a strong on-site interaction, which – in prin-
ciple – inhibits tunneling and drives the system deeply
into the Mott insulator regime. However, starting from a
state slightly perturbed from the ground state of the adi-
abatically eliminated Hamiltonian (37), the system does
not evolve towards this Mott-like ground state but to-
wards some other, drastically different state. Increasing
the photon number, while keeping the lattice depth con-
stant, reduces the atom fluctuations and keeps the sys-
tem near its adiabatic ground state. This is shown in Fig-
ure 8a, where the probability for the system being in the
Mott insulator regime pMI = |ψMI(t)|2 is plotted. Again
we observe that, the larger the intracavity photon num-
ber is, the more the potential approaches a purely classical
one and the more significant the ground state probabili-
ties of (37) are. Hence we see that including the photon
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Fig. 8. (Color online) Probability of the Mott insulator state
|ψMI(t)|2 for two atoms in two wells. Parameters and procedure
as in Figure 7, but due the second atom the photon numbers
are increased. The on-site interaction is U = 0.32ER. (a) Vcl =
0. The curves correspond to a mean photon number of 0.19
(solid line), 0.97 (dashed line), 4.8 (dashed-dotted line) and
24.2 (dotted line). (b) Vcl = −5ER and corresponding photon
numbers of 0.05 (solid line), 0.28 (dashed line), 1.44 (dashed-
dotted line).

Fig. 9. (Color online) Probability of the Mott insulator state
|ψMI(t)|2 for two atoms in two wells for different on-site in-
teraction. In (a) there is no interaction, i.e., U = 0, in (b)
U = 0.0065ER, in (c) U = 0.0324ER and in (d) U = 0.081ER.
Other parameters are (U0, κ, η,∆c) = (−50, 25, 1, 0) (in units
of ωR), the classical potential is Vcl = −10ER. The solid line in
each subplot shows the corresponding ground state probability
of (37) and the number of cavity photons is 〈a†a〉 = 1.3×10−4 .

number fluctuations strongly suppresses the Mott insula-
tor state by allowing the particles to hop during photon
number fluctuations. This is also a strong restriction for
the use of our adiabatic model Hamiltonian, where only
average photon numbers enter the model parameters.

Clearly, some added external classical potential dimin-
ishes this problem as it can ensure the existence of a bound
state, independent of the number of cavity photons, giving
an upper limit to the hopping rate. This is demonstrated
in Figure 8b, where a classical potential of Vcl = −5ER is
added. Here for 〈a†a〉 = 1.44 the deviations from the adia-
batic ground state are of the same order as for Vcl = 0 for
〈a†a〉 = 4.8 (Fig. 8a). Nevertheless, for not too leaky cavi-
ties (κ is in an intermediate regime), the regime of validity
of the adiabatically eliminated Hamiltonian (37) is limited
to case where either a large purely classical potential or a
large photon number is given.

Finally, we investigate the other limit of validity, where
a rather large external classical potential, but only a very
low photon number is given, i.e., a weakly driven cavity.
Here the ground state properties of our model resemble
to a very high degree those of the ordinary Bose-Hubbard
model. As mentioned above, an atomic ensemble interact-
ing with a purely classical potential, has no channels of
dissipation in the absence of spontaneous emission. So un-
less we prepare the system in its groundstate, it will show
undamped oscillation. In strong contrast the coupling of
the atoms to an even small intracavity field with a very
low photon number opens a dissipation channel. Although
the enhancement of atom number fluctuations due to fluc-
tuation induced tunneling is small, this damping still can
drive the system into a steady state, very closely to the
adiabatic ground state of (37). This is shown in Figure 9
for the case of two atoms in two wells. Here we prepare,
for different values of on-site interaction, the atoms in a
state perturbed from the ground state of (37) with ini-
tially no photon in the cavity and a given value of the
classical potential Vcl = −10ER. For g1D = 0, the ground
state is the superfluid state, so Figure 9a is the general-
ization of Figure 7 to two atoms. Although the photon
number is only 〈a†a〉 = 1.3 × 10−4, the system is driven
into its ground state. For increasing interaction strength,
the Mott insulator state becomes more and more favored.
Still, the interaction with the tiny intracavity field enables
damping of the atomic evolution towards a steady state,
very close to the adiabatic ground state.

This leads to the conclusion, that, although the cav-
ity field may not lead to significant modifications of the
ground state of the system, the cavity is a useful tool
for faster preparing a system of atoms in its ground
state by opening a dissipation channel, so that it de-
cays towards an eigenstate of the adiabatically eliminated
Hamiltonian (37).

4 Atom pumping

Let us now return to our starting Hamiltonian (26) and
consider a second generic model, where the pump laser
is not injected through the cavity mirrors, but directly
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illuminating the atoms. This rather small change has a
drastic influence on the physical behavior of this system.
In the case of cavity pumping, all atoms are simultane-
ously coupled to the same mode. In this way the cavity
field depends on the atomic distribution and long range
order interactions are mediated via the cavity field, influ-
encing the Mott-insulator to superfluid phase transition.
In the new geometry, only the directly excited atoms co-
herently scatter photons in the cavity mode. Due to the
position-dependent coupling, the scattered field amplitude
and phase for each atom is strongly position dependent.
Atoms located at nodes are not coupled to the field, lead-
ing to no scattering, whereas atoms at antinodes are max-
imally coupled, leading to maximum scattering. Atoms
in adjacent wells are separated by half a wavelength and
scatter with opposite phases, such that their contributions
to the scattered field interferes destructively. Naively one
would thus immediately conclude that atoms forming a
state with a homogeneous density scatter no field at all so
that nothing happens [34,35]. Nevertheless, fluctuations of
the density still can allow for some background scattering
which should diminish for lower temperature. For suit-
able parameters the corresponding forces start to reorder
the atoms towards a periodic pattern of the atoms, where
scattering is strongly enhanced. This then deepens the op-
tical potential, stabilizing the pattern in a self-organizing
runaway process, semiclassically described in [18].

At T = 0 quantum fluctuations still can trigger this
reorganization. To study this effect we assume the co-
herent pump field to form a broad plane wave propagat-
ing transversally to the cavity axis (see Fig. 1) replacing
cavity pumping. This means that we set η = 0 and the
Hamiltonian (26) for constant atom number N reads as
follows:

H = (E + JVcl) B̂ + � (U0J0N −∆c) a†a+
U

2
Ĉ

+�U0Ja
†aB̂ + �ηeff

(
a+ a†

)
J̃0D̂. (51)

Here we introduced the operator D̂ =
∑
k(−1)k+1n̂k de-

scribing the difference in atom number between odd and
even sites. The corresponding Heisenberg equation for the
cavity field (27) reads as follows:

ȧ =
{
i
[
∆c − U0

(
J0N + JB̂

)]
− κ

}
a− iηeffJ̃0D̂. (52)

Consequently the Heisenberg equation for the particle op-
erators is:

ḃk =
(
E + JVcl − iU0Ja

†a
)
(bk+1 + bk−1)

− iηeffJ̃0

(
a+ a†

)
(−1)k+1bk + Un̂kbk. (53)

Hence we see that the occupation number difference drives
the cavity field, which then in turn starts to dephase neigh-
boring atom sites via the first term in the second line of
equation (53). Note that this interesting part of the dy-
namics even survives for deeper lattices when J is negli-
gibly small and J̃0 is of order unity. This will discussed in
more detail using various approximations below.

4.1 Field-eliminated Hamiltonian

Adiabatic elimination of the field variables is a bit more
subtle here as compared to the cavity pump case discussed
before. The scattering amplitude of light into the cav-
ity mode here depends strongly on the atomic positions.
Hence even small position changes have a large influence
on the cavity field dynamics. The maximum photon num-
ber is established when all the atoms are well localized at
either only odd or only even lattice sites. For red atom
field detuning this increases the lattice depth and forces
the atoms into one of two stable patterns, where the wells
where atoms are located are deeper than the empty ones.
Hence this changes the translational periodicity of the op-
tical lattice from λ/2 to λ. Such bistable behavior was
observed by Vuletić and coworkers [20] and explained in a
semiclassical treatment [18].

Let us now turn to a quantum treatment of atoms and
field. Naive adiabatic elimination encounters a first diffi-
culty, as the operators B̂, D̂ do not commute, [B̂, D̂] �= 0.
Hence this already creates an ordering problem in the for-
mal steady-state solution of (52), which gets even more
difficult when it comes to the replacement of the field op-
erators to obtain an effective Hamiltonian (51). Unfortu-
nately also the second approach used in the case of cav-
ity pumping, namely reading off an effective Hamiltonian
from the particle operator Heisenberg equation does not
resolve this problems. Replacing a with the steady-state
expression in (53) leads to a rather complex form, so
that there is no simple way to find a suitable effective
Hamiltonian Had, with i�ḃk = [bk, Had].

Hence we have to resort to the further approximation
of neglecting the term �U0Ja

†aB̂, compared to JVcl. This
still leaves the most important part of the new physics,
but reduces the field equation to the form:

ȧ = (i∆′
c − κ) a− iηeffJ̃0D̂. (54)

The steady-state solution of this equation is immedi-
ately at hand and free of ordering ambiguities of non-
commuting operators.

a =
iηeffJ̃0

i∆′
c − κ

D̂. (55)

Also the particle operator equation is much simpler within
this approximation:

ḃk = (E + JVcl) (bk−1 + bk+1)

− iηeffJ̃0

(
a+ a†

)
(−1)k+1bk + Un̂kbk. (56)

In this form one then can find a well defined effec-
tive Hamiltonian only containing particle operators. Let
us thus proceed as in Section 3.1 and simply substi-
tute (55) and its adjoint into (51). This yields the effective
Hamiltonian:

Had = (E + JVcl)B̂ +
U

2
+

�J̃2
0η

2
eff∆

′
c

κ2 +∆′
c
2 D̂

2. (57)
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Within first order in J the replacement of the field vari-
ables in the Liouvillean part of the master equation (20)
in this case does not provide an extra terms to be included
in the Hamiltonian. So the effective cavity decay induced
dissipation of the atomic dynamics takes the simple and
intuitive form:

Lad	 =
κη2

effJ̃
2
0

κ2 +∆′
c
2

(
2D̂	D̂ − D̂2	− 	D̂2

)
. (58)

Note that equation (57) with the replacement of the field
operator by its steady-state expression also leads to the
same time evolution as induced by (56) after symmetrizing
with respect to the field terms. The two approaches thus
lead to identical predictions, which we will exhibit in some
more detail in the following.

4.2 Self-organization of atoms in an optical lattice

In this section we investigate the microscopic dynamics of
self-ordering near zero temperature and compare the re-
sults of the general model Hamiltonian (51) and the corre-
sponding effective Hamiltonian (57). In order to simplify
things, we keep the approximation from above and neglect
JU0a

†a in the model, i.e.,

H = (E + JVcl) B̂ − �∆′
ca

†a+
U

2
Ĉ + �ηeffJ̃0D̂

(
a+ a†

)
,

(59)
with ∆′

c = ∆c − U0J0N . Let us point out here, that the
Hamiltonian in this approximative form is equivalent to
a Hamiltonian describing 1D motion along an optical lat-
tice transverse to the cavity axis. Such a lattice can e.g.
be generated by the pump laser itself as it was studied
in [55,56] to investigate the onset of the self-organization
process [18–20] at zero temperature.

Similar to that case, the effective Hamiltonian equa-
tion (59) for moderate coupling reproduces quite well the
results of a full Monte Carlo wavefunction simulation. We
have checked this for a rather small system of two atoms
in two wells with periodic boundary conditions. This is
the minimal system to study self-organization but in gen-
eral sufficient to capture the physics. In this special case
the operator B̂ simply couples the ordered |11〉 state to
the state 1/

√
2 (|20〉 + |02〉), while the operator D̂2 leaves

all the basis states {|11〉, |20〉, |02〉} unchanged. It simply
leads to a relative energy shift. Hence starting from a per-
fectly ordered atomic state (the analog of the Mott insu-
lator state) the Hamiltonian part of the time evolution of
the system couples it to the symmetric superposition of
ordered states. In an adiabatic limit those ordered states
are correlated with a coherent field ±α in the cavity. Thus
without damping the evolution would simply read:

|ψ(t)〉=cos (2ωt) |11, 0〉+
i sin (2ωt)√

2
(|20, 2α〉+|02,−2α〉).

(60)

where the frequency ω is given by the (E + JVcl)/�. Here
|11, 0〉 is the state with one atom in each well and zero pho-
tons, whereas |20, α〉 (|02,−α〉) corresponds to the state
with both atoms in the left (right) well, and the cavity
field being in a coherent state with amplitude 2α (−2α).
The factor 2 is due to constructive interference of the
fields, scattered by the ordered atoms. In the Mott state,
the scattering fields cancel each other.

Note that such an entangled superposition of differ-
ent atomic states and fields cannot be reproduced by any
classical or mean field evolution and requires a genuine
quantum description. If on-site interaction is added the
amplitude of this oscillations decreases due to extra rel-
ative different phase changes of the self-ordered and the
Mott state.

Of course we now have to add the effect of dissipation
via cavity loss. We will see that even single cavity pho-
ton decay events strongly perturb the system evolution.
This can be immediately seen by applying the photon an-
nihilation operator to the entangled atom-field state, i.e.,

|ψ(t)′〉 ∝ a|ψ(t)〉 ∝ |20, 2α〉 − |02,−2α〉. (61)

This procedure projects out the Mott contributions to the
state as they are connected to zero photons. Surprisingly
in addition it also blocks further tunneling by introduc-
ing a minus sign between the two ordered states. At this
point coherent atomic time evolution stops until a second
photon escapes and re-establishes the plus sign. This then
allows tunnel coupling back to the Mott insulator state
again. In this sense self-ordering is an instantaneous pro-
jective process here, where the cavity acts as measurement
apparatus asking a sort of yes/no ordering question.

The fact, that for transverse pumping the adiabatic
field state associated with the Mott insulator is an in-
tracavity vacuum decouples this state from further dy-
namics even in the presence of dissipation. This creates
numerical difficulties and prohibits an approximation of
the dissipative dynamics by the adiabatic ground state
values of (57) only. As soon as a photon leaks out of
the cavity, the contribution of the Mott-insulator state
is canceled, no matter how large it, corresponding to a
given on-site interaction, might be. Hence, every initial
state evolves into a superposition of the ordered states
and the ground state values of the effective Hamilto-
nian do not make much sense. Nevertheless, including
the damping via the effective Liouvillean (58) approxi-
mately reveals the complete dynamics. In Figure 10 we
show the results of a Monte Carlo simulation of the dy-
namics of the Mott and the superfluid contribution, cor-
responding to (59) and compare it with a solution of the
master equation, consisting of the Hamiltonian (57) and
Liouvillean (58), where the field variables are eliminated.
Furthermore, the restriction of the Hilbert space to the
two states of (61) and |11, 0〉, allows for a proof of the
accuracy of our assumption, concerning the fast evolu-
tion of the cavity field. We use the coefficients c(t), c̃(t)
(calculated with the Monte Carlo simulation) of |ψ(t)〉 =
c̃(t)|11, 0〉+c(t)(|20, 2α〉±|02,−2α〉) to construct a purely
atomic state |ϕ(t)〉 = c̃(t)|11〉+ c(t)(|20〉± |02〉). Then the
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Fig. 10. (Color online) (a) Contribution of the Mott insu-
lator state pMI in a system of two atoms in two wells. The
solid line shows the results of a Monte Carlo simulation, corre-
sponding to (59) with dissipation via cavity loss. The dashed
line depicts the solution of a master equation with effective
Hamiltonian (57) and Liouvillean (58). The constant line,
shows the ground state value of this contribution of the ef-
fective Hamiltonian. (b) The same for the contribution of the
superfluid state pSF. (c) Shows analogue results for the mean
photon number. Parameters are Vcl = −10ER, (κ,U0, ηeff) =
(4,−0.1, 1)ωR and ∆c = U0J0N + κ.

mean photon number, calculated with the effective photon
operator (55) agrees very well with the real mean photon
number, i.e.,

η2
effJ̃

2
0

∆′
c
2 + κ2

〈ϕ(t)|D̂2|ϕ(t)〉 ≈ 〈ψ(t)|a†a|ψ(t)〉. (62)

5 Conclusions

Based on an approximative Bose-Hubbard type model de-
scriptions, we have shown that quantum characteristics
of light fields generating optical potentials lead to shifts
in quantum phase transition points and play a decisive
role in the microscopic dynamics of the transition pro-
cess. While many physical aspects can be already cap-
tured by effective Hamiltonians with rescaled parameters,
cavity mediated long-range interactions also play an im-
portant role and add a new nonlocal element to optical
lattices dynamics for atoms. In that context even small
modifications in the setup, from cavity pump to trans-
verse pump, have a drastic influence on the behavior of
the system on a microscopic level. We have seen that the
Bose-Hubbard Hamiltonian for the former system can, in
a certain parameter regime, be significantly simplified by
adiabatically eliminating the field variables. Although the
cavity has influence on its shape, the Mott insulator to su-
perfluid phase transition occurs similar to classical optical
lattices. For transverse pumping this is not the case. Here,
the fields scattered by the atoms in the uniform Mott state
cancel and completely suppress scattering. In parallel new
ordered states with maximal coupling of pump and cav-
ity field appear and the dynamics favors a superposition
of these two ordered states correlated with coherent field
states with phase difference π. Hence the dynamics gen-
erates strong atom field entanglement and large effective
optical nonlinearities even in the limit of linear weak field
scattering.

Of course the various approximations used to derive
our effective Hamiltonians still leave a lot of room for im-
provements and we could only touch a very small part
of the physical effects and possibilities contained in these
model. Fortunately the experimental progress in this field
is spectacularly fast and several groups now have set up
optical lattices with cavity fields [36–40] and intriguing
potential applications of such systems were already pro-
posed [57], so that one can expect a fast and exciting fur-
ther development of this field.

The authors would like to thank M. Lewenstein, G. Morigi,
S. Fernández-Vidal, A. Micheli, and A. Vukics for useful dis-
cussions. This work was funded by the Austrian Science Fund
(P17709 and S1512). After completion of this work we became
aware of related parallel work by M. Lewenstein and coworkers,
which treats many aspects of this model in the thermodynamic
limit [58].
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36. A. Öttl, S. Ritter, M. Köhl, T. Esslinger, Phys. Rev. Lett.
95, 090404 (2005); T. Bourdel, T. Donner, S. Ritter, A.
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